On Lipschitz ball noncollapsing functions and uniform co-Lipschitz mappings of the plane
نویسندگان
چکیده
منابع مشابه
On Lipschitz Ball Noncollapsing Functions and Uniform Co-lipschitz Mappings of the Plane
is called the modulus of (uniform) continuity of f . The mapping f is said to be uniformly continuous if Ω f (d) → 0 as d ↓ 0. In this case the modulus of continuity is a subadditive monotone continuous function. The definition of Ω f implies that f (Br(x)) ⊂ BΩ f (r)( f (x)). (By Bρ(y) and Bρ(y) we denote, respectively, the open and the closed ball of radius ρ, centered at y.) One important cl...
متن کاملBi-Lipschitz Mappings and Quasinearly Subharmonic Functions
After considering a variant of the generalized mean value inequality of quasinearly subharmonic functions, we consider certain invariance properties of quasinearly subharmonic functions. Kojić has shown that in the plane case both the class of quasinearly subharmonic functions and the class of regularly oscillating functions are invariant under conformal mappings. We give partial generalization...
متن کاملLipschitz Functions with Minimal Clarke Subdiierential Mappings
In this paper we characterise, in terms of the upper Dini derivative, when the Clarke subdiierential mapping of a real-valued locally Lipschitz function is a minimal weak cusco. We then use this characterisation to deduce some new results concerning Lips-chitz functions with minimal subdiierential mappings. In the papers 7] and 1], the authors investigate a class of locally Lipschitz functions ...
متن کاملLipschitz Spaces and Harmonic Mappings
In [11] the author proved that every quasiconformal harmonic mapping between two Jordan domains with C, 0 < α ≤ 1, boundary is biLipschitz, providing that the domain is convex. In this paper we avoid the restriction of convexity. More precisely we prove: any quasiconformal harmonic mapping between two Jordan domains Ωj , j = 1, 2, with C, j = 1, 2 boundary is bi-Lipschitz.
متن کاملOn Gâteaux Differentiability of Pointwise Lipschitz Mappings
Abstract. We prove that for every function f : X → Y , where X is a separable Banach space and Y is a Banach space with RNP, there exists a set A ∈ Ã such that f is Gâteaux differentiable at all x ∈ S(f) \ A, where S(f) is the set of points where f is pointwise-Lipschitz. This improves a result of Bongiorno. As a corollary, we obtain that every K-monotone function on a separable Banach space is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2005
ISSN: 1085-3375,1687-0409
DOI: 10.1155/aaa.2005.543